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Abstract1

Assume-guarantee reasoning is a “divide-and-conquer” approach to the verification of large2

systems that makes use of assumptions about the environment of that system’s compo-3

nents. Developing appropriate assumptions used to be a difficult and manual process. Over4

the past five years, we have developed a framework for performing assume-guarantee5

verification of systems in an incremental and fully automated fashion. The framework6

uses an off-the-shelf learning algorithm to compute the assumptions. The assumptions are7

initially approximate and become more precise by means of counterexamples obtained8

by model checking components separately. The framework supports different assume-9

guarantee rules, both symmetric and non-symmetric. Moreover, we have recently intro-10

duced alphabet refinement, which extends the assumption learning process to also infer11

assumption alphabets. This refinement technique starts with assumption alphabets that are12

a subset of the minimal interface between a component and its environment, and adds ac-13

tions to it as necessary until a given property is shown to hold or to be violated in the14

system. We have applied the learning framework to a number of case studies that show that15

compositional verification by learning assumptions can be significantly more scalable than16

non-compositional verification.17

Key words: Assume guarantee, model checking, labeled transition systems, learning,18

proof rules, compositional verification.19

1 Introduction20

Model checking is an effective technique for finding subtle errors in concurrent21

systems. Given a finite model of a system and a required property of that system,22

model checking determines automatically whether the property is satisfied by the23

system. The cost of model checking techniques may be exponential in the size of24

the system being verified, a problem known as state explosion [10]. This can make25

model checking intractable for systems of realistic size.26

Compositional verification techniques address the state-explosion problem by us-27

ing a “divide-and-conquer” approach: properties of the system are decomposed28

into properties of its components and each component is then checked separately.29

In checking components individually, it is often necessary to incorporate some30

knowledge of the context in which each component is expected to operate correctly.31

Email addresses: dimitra@email.arc.nasa.gov (Dimitra Giannakopoulou),
pcorina@email.arc.nasa.gov (Corina S. P ăs ăreanu), mg@cs.toronto.edu
(Mihaela Gheorghiu Bobaru), Jamieson.Cobleigh@mathworks.com (Jamieson
M. Cobleigh), howard.barringer@manchester.ac.uk (Howard Barringer).
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Assume-guarantee reasoning [20,25] addresses this issue by using assumptions that1

capture the expectations that a component makes about its environment. Assump-2

tions have traditionally been developed manually, which has limited the practical3

impact of assume-guarantee reasoning.4

To address this problem, we have proposed a framework [13] that fully automates5

assume-guarantee model checking of safety properties for finite labeled transition6

systems. At the heart of this framework lies an off-the-shelf learning algorithm,7

namely L* [4], that is used to compute the assumptions. In one instantiation of this8

framework, a safety property
�

is verified on a system consisting of components9 �
� and

�
� by learning an assumption under which

�
� satisfies

�
. This assump-10

tion is then discharged by showing it is satisfied by
�

� . In [5] we extended the11

learning framework to support a set of novel symmetric assume-guarantee rules12

that are sound and complete. In all cases, this learning based framework is guaran-13

teed to terminate, either stating that the property holds for the system, or returning14

a counterexample if the property is violated.15

Compositional techniques have been shown particularly effective for well-16

structured systems that have small interfaces between components [7,17]. Inter-17

faces consist of all communication points through which components may influ-18

ence each other’s behavior. In our initial presentations of the framework [13,5] the19

alphabets of the assumption automata included all the actions in the component20

interface. In a case study presented in [24], however, we observed that a smaller al-21

phabet can be sufficient to prove a property. This smaller alphabet was determined22

through manual inspection and with it, assume-guarantee reasoning achieves or-23

ders of magnitude improvement over monolithic (i.e., non-compositional) model24

checking [24].25

Motivated by the successful use of a smaller assumption alphabet in learning, we26

investigated in [16] whether the process of discovering a smaller alphabet that is27

sufficient for checking the desired properties can be automated. Smaller alphabets28

mean smaller interfaces among components, which may lead to smaller assump-29

tions, and hence to smaller verification problems. We developed an alphabet re-30

finement technique that extends the learning framework so that it starts with a small31

subset of the interface alphabet and adds actions into it as necessary until a required32

property is either shown to hold or shown to be violated in the system. Actions to33

be added are discovered by analysis of the counterexamples obtained from model34

checking the components.35

The learning framework and the alphabet refinement have been implemented within36

the LTSA model checking tool [22] and they have been effective in verifying real-37

istic concurrent systems, such as the ones developed in NASA projects. This paper38

presents and expands the material presented in [13] (original learning framework39

for automated assume-guarantee reasoning with an asymmetric rule), [5] (learning40

for symmetric rules), and [16] (alphabet refinement for original framework). In ad-41
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dition we describe here a new extension with a circular rule, alphabet refinement1

for symmetric and circular rules, and present new experimental data.2

The rest of the paper is organized as follows. Section 2 provides background on3

labeled transition systems, finite state machines, assume guarantee reasoning and4

the L* algorithm. Section 3 follows with a presentation of the learning framework5

that automates assume guarantee reasoning for asymmetric and circular rules. Sec-6

tion 4 presents the extension of the framework with symmetric rules, followed by7

Section 5 which presents the algorithm for interface alphabet refinement. Section 68

provides an experimental evaluation of the described techniques. Section 7 surveys9

related work and Section 8 concludes the paper.10

2 Preliminaries11

In this section we give background information for our work: we introduce labeled12

transition systems and finite state machines, together with their associated opera-13

tors, and also present how properties are expressed and checked in this context. We14

also introduce assume-guarantee reasoning and the notion of weakest assumption15

that is used in our learning framework. Moreover we provide a detailed descritip-16

tion of the learning algorithm that we use to automate assume-guarantee reasoning.17

The reader may wish to skip this section on the first reading.18

2.1 Labeled Transition Systems (LTSs)19

Let ����� be the universal set of observable actions and let � denote a local action un-20

observable to a component’s environment. We use � to denote a special error state,21

which models the fact that a safety violation has occurred in the associated transi-22

tion system. We require that the error state has no outgoing transitions. Formally,23

an LTS
�

is a four tuple �	��
�� � 
��
������ where:24

� � is a finite non-empty set of states25 � � � � ����� is a set of observable actions called the alphabet of
�

26 �  � ����� � ��� ����� � is a transition relation27 � ���"! � is the initial state28

We use # to denote the LTS � � �$�%
&������
�'(
)�*� . An LTS
� + �	��
�� � 
��
��,��� is non-29

deterministic if it contains � -transitions or if -/.0�1
�23
��54768
9.:�;
�2<
&�=4 4>6?!@ such that30 �=4BA+ �=4 4 . Otherwise,
�

is deterministic.31

Consider a simple communication channel that consists of two components whose32

LTSs are shown in Fig. 1. Note that the initial state of all LTSs in this paper is state33 C
. The D%E;F3G3� LTS receives an input when the action input occurs, and then sends it34
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ack

Input:

20 1

sendinput

ack

Output:

0 1 2

send output

Fig. 1. Example LTSs

to the � G<� F(G<� LTS with action send. After some data is sent to it, � G<� F(G<� produces1

output using the action output and acknowledges that it has finished, by using the2

action ack. At this point, both LTSs return to their initial states so the process can3

be repeated.4

2.1.1 Traces5

A trace � of an LTS
�

is a sequence of observable actions that
�

can perform6

starting at its initial state. For example, � input � and � input, send � are both traces of7

the D%E1F3G3� LTS in Fig. 1. We sometimes abuse this notation and denote by � both8

a trace and its trace LTS. For a trace � of length E , its trace LTS consists of E����9

states, where there is a transition between states � and ����� on the � th action in10

the trace � . The set of all traces of an LTS
�

is the language of
�

and is denoted11 � . � 6 .12

For 	
� ����� , we use ��
�	 to denote the trace obtained by removing from � all13

occurrences of actions 2�!�	 . Similarly,
�

�	 is defined to be an LTS over alpha-14

bet 	 which is obtained from
�

by renaming to � all the transitions labeled with15

actions that are not in 	 . Let � , � 4 be two traces. Let 	 , 	 4 be the sets of actions16

occurring in � , � 4 , respectively. By the symmetric difference of � and � 4 we mean the17

symmetric difference of sets 	 and 	 4 .18

2.1.2 Parallel Composition19

Let
� + � ��
�� � 
��
����8� and

� 4 + � � 4 
�� � 4 
��4 
&�=4� � . We say that
�

transits into20 � 4 with action 2 , denoted
� ���� � 4 , if and only if .:�,��
�2<
&�=4� 6�!� and either21 � + � 4 , � � + � � 4 , and  +  4 for � 4� A+ � , or, in the special case where � 4� + � ,22 � 4 + # .23

The parallel composition operator � is a commutative and associative operator that24

combines the behavior of two components by synchronizing the actions common to25

their alphabets and interleaving the remaining actions. For example, in the parallel26

composition of the D%E;F3G3� and � G3� F3G3� components from Fig. 1, actions send and27

ack will each be synchronized while input and output will be interleaved.28

Formally, let
�

�
+ � � � 
�� �

� 
� � 
�� �� � and
�

�
+ � � � 
�� �

� 
� � 
�� �� � be two LTSs.29

If
�

�
+ # or

�
�
+ # , then

�
� �

�
�
+ # . Otherwise,

�
� �

�
� is an LTS30 � + � ��
�� � 
��
�� ��� , where � + � � � � �

, � � + .:� �� 
�� �� 6 , �
� + � �

�
� � �

� , and31
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input

0 1

π

output

input

output

Fig. 2. ��������� Property

 is defined as follows, where 2 is either an observable action or � (note that the1

symmetric rules are implied by the fact that the operator is commutative):2

�
�
���� � 4� , 2�! � �

��
� �

�
�
���� � 4� � �

�

�
�
���� � 4� ,

�
�
���� � 4� , 2�A+ ��

� �
�

�
�� � � 4� � � 4�3

2.1.3 Properties4

We call a deterministic LTS that contains no � states a safety LTS. A safety property5

is specified as a safety LTS
�

, whose language
� . � 6 defines the set of acceptable6

behaviors over � �
. For LTS

�
and safety LTS

�
such that � � � � �

,
�

satisfies7 �
, denoted as

� � + �
, if and only if 	�
�! � . � 6� .�
 
&� � 6 ! � . � 6 .8

When checking a property
�

, an error LTS denoted
�������

is created, which
traps possible violations with the � state. Formally, the error LTS of a property� + � ��
�� � 
�9
&����� is

������� + � � ��� �$�%
�� ������� 
��4 
�� ��� , where � ������� + � �
and

 4 +  � � .0�1
�23
&�*6 � � !���
�2 ! � � 
 and � � 4 ! ��� .:�;
�23
�� 4 6 !�%�
Note that the error LTS is complete, meaning each state other than the error state9

has outgoing transitions for every action in the alphabet.10

For example, the ��������� property shown in Fig. 2 captures a desired behavior of11

the communication channel shown in Fig. 1. The property comprises states
C 
 � and12

the transitions denoted by solid arrows. It expresses the fact that inputs and outputs13

come in matched pairs, with the input always preceding the output. The dashed14

arrows illustrate the transitions to the error state that are added to the property to15

obtain its error LTS, � ������� ���!� .16

To detect violations of property
�

by component
�

, the parallel composition17 �
� �������

is computed. It has been proved that
�

violates
�

if and only if the18 � state is reachable in
�
� �"�����

[?]. For example, state � is not reachable in19 D%E;F3G3� � � G3� F3G3� � ��������� ����� , so we conclude that D%E1F3G3� � � G3� F3G3� � + � ���#��� .20
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2.2 LTSs and Finite-State Machines1

As described in Section 4, some of the assume-guarantee rules require the use of the2

“complement” of an LTS. LTSs are not closed under complementation, so we need3

to define here a more general class of finite-state machines (FSMs) and associated4

operators for our framework.5

An FSM
�

is a five tuple �	��
�� � 
��
�� �,
�� � where ��
�� � 
��
 and ��� are defined as6

for LTSs, and �
� � is a set of accepting states.7

For an FSM
�

and a trace � , we use
�;.:�;
)�)6 to denote the set of states that

�
can8

reach after reading � starting at state � . A trace � is said to be accepted by an FSM9 � + �	��
�� � 
��
�� �,
�� � if
� .:���,
&�)6����@A+ ' . The language accepted by

�
, denoted10 � . � 6 is the set

� � � �;.0� �,
&�)6���� A+ ' � .11

For an FSM
� + � ��
�� � 
��
�����
�� � , we use LTS(

�
) to denote the LTS12 � ��
�� � 
�9
&����� defined by its first four fields. Note that this transformation does13

not preserve the language of the FSM, i.e., in some cases
� . � 6 A+ � . LTS . � 6&6 .14

On the other hand, an LTS is in fact a special instance of an FSM, since it can be15

viewed as an FSM for which all states are accepting. From now on, whenever we16

apply operators between FSMs and LTSs, it is implied that the LTS is treated as its17

corresponding FSM.18

We call an FSM
�

deterministic if and only if LTS(
�

) is deterministic.19

2.2.1 Parallel Composition of FSMs20

Let
�

�
+ � � � 
�� �

� 
� � 
�� �� 
�� � � and
�

�
+ �	� � 
�� �

� 
� � 
�� �� 
�� � � be two FSMs.21

Then
�

� �
�

� is an FSM
� + � ��
�� � 
��
�����
�� � , where:22

� � ��
�� � 
�9
&����� +��
	�� . �
� 6 � �	�� . �

� 6 , and23 � � + � .�� � 
�� � 6 ! � � � � � � � � !�� �
and � � !�� � � .24

Note 125 � . �
� �

�
� 6 + � � � � 
)� �

� ! � . �
� 6�� ��
&� �

� ! � . �
� 6�� � ! .0� �

�
� � �

� 6�� �26

2.2.2 Properties27

For FSMs
�

and
�

where � � � � �
,

� � + �
if and only if

	 � ! � . � 6� � 
)� � ! � . � 6

7



2.2.3 Complementation1

The complement of an FSM (or an LTS)
�

, denoted ��� �
, is an FSM that accepts2

the complement of
�

’s language. It is constructed by first making
�

determinis-3

tic, subsequently completing it with respect to � �
, and finally turning all accepting4

states into non-accepting ones, and vice-versa. An automaton is complete with re-5

spect to some alphabet if every state has an outgoing transition for each action in6

the alphabet. Completion typically introduces a non-accepting state and appropriate7

transitions to that state.8

2.3 Assume Guarantee Reasoning9

2.3.1 Assume Guarantee Triples10

In the assume-guarantee paradigm a formula is a triple � � � � � � � , where
�

is a11

component,
�

is a property, and
�

is an assumption about
�

’s environment. The12

formula is true if whenever
�

is part of a system satisfying
�

, then the system13

must also guarantee
�

[18,25], i.e., 	�� , � �
� � + �

implies � �
� � + �

. For14

LTS
�

and safety LTSs
�

and
�

, checking � � � � � � � reduces to checking if state15 � is reachable in
� �

�
� �������

. Note that when � � � � � � � �
, this is equivalent16

to
� �

� � + �
.17

Theorem 1 � � � � � � � is true if and only if � is unreachable in
� �

�
� �������

.18

PROOF.19

� “if part” Assume � � � � � � � is true. We need to show that � is unreachable20

in
� �

�
� �������

. We prove this by contradiction. Assume � is reachable in21 � �
�
� �������

by a trace � . As a result, ��
&� � ! � . � 6 , ��
&� � ! � . � 6 , and22 ��
&� � ! � . ������� 6 (see Note 1 on page 7).23

Let � be the trace LTS for the trace � 
)� � , but augment its alphabet so24

that � �
� � + �

and � �
� � + �

are well defined, i.e., � � � .0� � � ��� 625

and � � � .	� � � ����6 . By construction,
� .�� 6 consists of � 
)� � and all of26

its prefixes. Since ��
&� � ! � . � 6 , we can conclude that �
� + �

. As a result,27

� �
� � + �

.28

From our hypothesis that � � � � � � � is true, the fact that � �
� � + �

29

implies that � �
� � + �

. However, ��
&��� ! � .�� 6 , ��
&� � ! � . � 6 , and30 ��
&� � ! � . ������� 6 . This means that � is reachable in � �
�
� �"���!�

(on trace � ).31

As a result, we can conclude that � �
� A� + �

, which is a contradiction.32

So, our original assumption that � is reachable in
� �

�
� �����!�

is incorrect.33

Thus, � is not reachable in
� �

�
� �"�����

, as desired.34

35
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� “only if part” Assume � is unreachable in
� �

�
� �"�����

. We need to show that1 � � � � � � � . We again prove by contradiction. Assume � � � � � � � is not true,2

i.e., assume - � such that � �
� � + �

but � �
� A� + �

. (Again, we assume that3 ��� is constructed such that
� +

is well defined in the previous sentence.)4

Since � �
� A� + �

then � is reachable in � �
�
� �"�����

by some trace5 � . As a result, ��
&��� ! � . ��6 , ��
)� � ! � . � 6 , and ��
&� � ! � . ������� 6 . Since6

� �
� � + �

and � � � ��� , it follows that ��
&� � ! � . � 6 . As a result, � is7

reachable in
� �

�
� �������

by � 
�.	� � � � � � � � 6 , which is a contradiction.8

Thus, � � � � � � � is true, as desired.
�

9

2.3.2 Weakest Assumption10

A central notion of our work is that of the weakest assumption [17], defined for-11

mally here.12

Definition 2 (Weakest Assumption for 	 ) Let
�

� be an LTS for a component,13 �
be a safety LTS for a property required of

�
� , and 	 be the interface of the14

component to the environment. The weakest assumption
���
� � of

�
� for 	 and15

for property
�

is a deterministic LTS such that: 1) � ��� � � + 	 , and 2) for any16

component
�

� such that 	
� � �

� ,
�

� � . �
� 
 	 6 � + �

iff
�

�
� + ���

� �17

The notion of a weakest assumption depends on the interface between the compo-18

nent and its environment. Accordingly, projection of
�

� to 	 forces
�

� to com-19

municate with our module only through 	 (second condition above). In [17] we20

showed that weakest assumptions exist for components expressed as LTSs, safety21

properties expressed as safety LTSs, and provided an algorithm for computing these22

assumptions.23

The definition above refers to any environment component
�

� that interacts with24

component
�

� via an alphabet 	 . When
�

� is given, there is a natural notion of25

the complete interface between
�

� and its environment
�

� , when property
�

is26

checked.27

Definition 3 (Interface Alphabet) Let
�

� and
�

� be component LTSs, and28 �
be a safety LTS. The interface alphabet 		� of

�
� is defined as:29

	
�
+ .0� �

�
� � � 6 � � �

� .30

Definition 4 (Weakest Assumption) Given
�

� ,
�

� and
�

as above, the weakest31

assumption
���

is defined as
���
� �� .32

Note that, to deal with any system-level property, we allow properties in Defini-33

tion 3 to include actions that are not in � �
� but are in � �

� . These actions need34

to be in the interface since they are controllable by
�

� . Moreover from the above35

definitions, it follows that
�

� �
�

�
� + �

iff
�

�
� + ���

.36
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(1) let
� +

�
+ ��� �

loop
�

(2) Update
	

using queries
while . � 
 � 
 	 6 is not closed

�
(3) Add ��2 to

�
to make

�
closed where � ! � and 2 ! 	

(4) Update
	

using queries�
(5) Construct candidate DFSM � from . � 
 � 
 	 6
(6) Make the conjecture �
(7) if � is correct return �

else
(8) Add � ! 	 � that witnesses the counterexample to ��

Fig. 3. The L* Algorithm

2.4 The L* Learning Algorithm1

L* was developed by Angluin [4] and later improved by Rivest and Schapire [26].2

L* learns an unknown regular language � over alphabet 	 and produces a deter-3

ministic finite state machine (DFSM) that accepts it. L* interacts with a Minimally4

Adequate Teacher, henceforth referred to as a Teacher, that answers two types of5

questions from L*. The first type of question is a membership query, in which L*6

asks whether a string � !�	 � is in � . The second type of question is a conjec-7

ture, in which L* asks whether a conjectured DFSM � is one where
� .�� 6 + � .8

If
� .�� 6 A+ � the Teacher returns a counterexample, which is a string � in the9

symmetric difference of
� .�� 6 and � .10

At a higher level, L* creates a table where it incrementally records whether strings11

in 	 � belong to � . It does this by making membership queries to the Teacher. At12

various stages L* decides to make a conjecture. It constructs a candidate automaton13

� based on the information contained in the table and asks the Teacher whether14

the conjecture is correct. If it is, the algorithm terminates. Otherwise, L* uses the15

counterexample returned by the Teacher to extend the table with strings that witness16

differences between
� .�� 6 and � .17

2.4.1 Details of L*18

In the following more detailed presentation of the algorithm, line numbers re-
fer to L*’s illustration in Fig. 3. L* builds an observation table . � 
 ��
 	 6 where�

and � are a set of prefixes and suffixes, respectively, both over 	 � . In addi-
tion,

	
is a function mapping . � � ���

	 6 � � to
�
true 
 false � , where the oper-

ator “
�
” is defined as follows. Given two sets of sequences of actions

�
and � ,� � � + � F(� � F ! �

and � ! � � , where F(� represents the concatenation of the se-

10



quences F and � . Initially, L* sets
�

and � to
��� � (line 1), where

�
represents

the empty string. Subsequently, it updates the function
	

by making membership
queries so that it has a mapping for every string in . ����� �

	 6 � � (line 2). It then
checks whether the observation table is closed, i.e., whether

	 � ! � 
 	 2 ! 	 
�- � 4 ! � 
 	 � ! � �
	 . ��2��96 + 	 . � 4 �96

If . � 
 � 
 	 6 is not closed, then �92 is added to
�

where ��! � and 2 ! 	 are the1

elements for which there is no ��4 ! �
(line 3). Once �92 has been added to

�
,
	

2

needs to be updated (line 4). Lines 3 and 4 are repeated until . � 
 � 
 	 6 is closed.3

Once the observation table is closed, a candidate DFSM �
+ �	��
�� � 
�9
&�9��
 � � is4

constructed (line 5), with states � +��
, initial state ��� + �

, and alphabet � � + 	 ,5

where 	 is the alphabet of the unknown language � . The set � consists of the states6

� ! �
such that

	 . �96 + true. The transition relation  is defined as ;. � 
�216 + �747

where 	 � ! � �
	 . ��2��96 + 	 . ��4 �96 . Such an ��4 is guaranteed to exist when . � 
 � 
 	 68

is closed. The DFSM � is presented as a conjecture to the Teacher (line 6). If the9

conjecture is correct, i.e., if
� .�� 6 + � , L* returns � as correct (line 7), otherwise10

it receives a counterexample � ! 	 � from the Teacher.11

The counterexample � is analyzed using a process described below to find a suffix12

� of � that witnesses a difference between
� .�� 6 and � (line 8). � must be such that13

adding it to � will cause the next conjectured automaton to reflect this difference.14

Once � has been added to � , L* iterates the entire process by looping around to15

line 2.16

As stated previously, in line 8 L* must analyze the counterexample � to find a suffix17

� of � that witnesses a difference between
� .�� 6 and � . This is done by finding the18

earliest point in � at which the conjectured automaton and the automaton that would19

recognize the language � diverge in behavior. This point found by determining20

where
��� A+ ����� � , where

���
is computed as follows:21

(1) Let F be the sequence of actions made up of the first � actions in � . Let � be22

the sequence made up of the actions after the first � actions in � . Thus, � + F � .23

(2) Run � on F . This moves � into some state � . By construction, this state �24

corresponds to a row � ! � of the observation table.25

(3) Perform a query on the actions sequence ��� .26

(4) Return the result of the membership query as
���

.27

By using binary search, the point where
��� A+ ����� � can be found in � .
	��� � � � 628

queries, where
� � � is the length of � .29

11



2.4.2 Characteristics of L*1

L* is guaranteed to terminate with a minimal automaton
�

for the unknown lan-2

guage � . Moreover, for each closed observation table . � 
 ��
 	 6 , the candidate3

DFSM � that L* constructs is smallest, in the sense that any other DFSM con-4

sistent
�

with the function
	

has at least as many states as � . This characteristic5

of L* makes it particularly attractive for our framework. The conjectures made by6

L* strictly increase in size; each conjecture is smaller than the next one, and all7

incorrect conjectures are smaller than
�

. Therefore, if
�

has E states, L* makes8

at most E � � incorrect conjectures. The number of membership queries made by9

L* is � .��;E � � E 	 �� � 6 , where � is the size of the alphabet of � , E is the number10

of states in the minimal DFSM for � , and � is the length of the longest counterex-11

ample returned when a conjecture is made.12

3 Learning for Assume-Guarantee Reasoning13

In this section we introduce a simple, asymmetric assume-guarantee rule and we14

describe a framework which uses L* to learn assumptions that automate reason-15

ing about two components based on this rule. We also discuss how the framework16

has been extended to reason about E components and to use circular rules. [JMC:17

Should this section focus on just rule ASYM? It goes into a lot of detail about18

this rule and learning for this rule, including a long example. I think the struc-19

ture of the paper would be better if the extensions to ASYM rules were in their20

own Section.]21

3.1 Assume-Guarantee Rule ASYM22

As mentioned, our framework incorporates a number of symmetric and asymmetric23

rules for assume-guarantee reasoning. The simplest assume-guarantee proof is for24

checking a property
�

on a system with two components
�

� and
�

� and is as25

follows [18]:26

Rule ASYM ���*� � � �
� � � �� �*� true � �

� � � �� true � �
� �

�
� � � �

�
A DFSM � is consistent with function � if, for every � in ���
	����������� , ���������� if

and only if ��������� true.

12
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Fig. 4. Learning framework for rule ASYM

In this rule,
�

denotes an assumption about the environment in which
�

� is placed.1

Note that this rule is not symmetric in its use of the two components, and does not2

support circularity. Despite its simplicity, our experience with applying compo-3

sitional verification to several applications has shown it to be most useful in the4

context of checking safety properties.5

For the use of the rule ASYM to be justified, the assumption must be more abstract6

than
�

� , but still reflect
�

� ’s behavior. Additionally, an appropriate assumption7

for the rule needs to be strong enough for
�

� to satisfy
�

in premise 1. Developing8

such an assumption is difficult to do manually. In the following, we describe a9

framework that uses L* to learn assumptions automatically.10

3.2 Learning Framework for Rule ASYM11

To use L* to learn assumptions, it needs to be supplied with a Teacher capable of12

answering queries and conjectures. We use the LTSA model checker to answer both13

of these questions. The learning framework for rule ASYM is shown in Fig. 4. For14

this framework, the alphabet of the learned assumption is 	
+
	 � . As a result, the15

sequence of automata conjectured by L* converges on the weakest assumption,
� �

.16

3.2.1 The Teacher17

Answering Queries Recall that L* makes a query by asking whether a trace � is18

in the language being learned. The teacher must return true if � is in the language19

being learned and false otherwise. To answer a query, the Teacher uses LTSA to20

13



check �0�)� �
� � � � . If this is false, then the assumption needed to make � � � �

� � � �1

true should not allow this behavior, and false will be return to L*. Otherwise, the2

behavior is allowed and true will be returned to L*.3

Answering Conjectures A conjecture consists of an FSM that L* believes will4

recognize the language being learned. The Teacher must return true if the conjec-5

ture is correct. Otherwise, the teacher must return false and a counterexample that6

witnesses an error in the conjectured FSM, i.e., a trace in the symmetric difference7

of the language being learned and the conjectured automaton. In our framework,8

the conjectured FSM is an assumption that is being used to complete an assume-9

guarantee proof. Since LTSA takes LTSs and not FSMs, we treat the conjectured10

FSM as an LTS, as described in Section 2.2, which we denote as the LTS
�

. To11

answer a conjecture, the Teacher uses two oracles:12

� Oracle 1 guides L* towards a conjecture that makes premise 1 of rule ASYM13

true. It checks � � � �
� � � � and if the result is false, then a counterexample � is14

produced. Since the premise was false, the conjectured assumption is incorrect15

because it is allowing a behavior (represented by � ) that should be forbidden.16 � 
 	 is returned to L* to answer the conjecture. If the triple is true, then the17

Teacher moves on to Oracle 2.18 � Oracle 2 is invoked to check premise 2 of rule ASYM, i.e., to discharge
�

on
�

�
19

by verifying that �0� �=G �9� �
� � � � is true. This triple is checked and if it is true,20

then the assumption makes both premises true and thus, the assume-guarantee21

rule guarantees that � true � �
� �

�
� � � � is true. The Teacher then returns true22

and the computed assumption
�

. Note that
�

is not necessarily
���

, it can be23

stronger than
���

, i.e.,
� . � 6 ��� . ��� 6 , but the computed assumption is suffi-24

cient to prove that the property holds. If the triple is not true, then a counterex-25

ample � is produced. In this case further analysis is needed to determine if either26 �
is indeed violated by

�
� �

�
� or if

�
is not precise enough, in which case

�
27

needs to be modified.28

Counterexample analysis The counterexample � must be analyzed to determine29

if it is a real counterexample, i.e., if it causes
�

� �
�

� to violate
�

. To do this,30

the Teacher performs a query on � 
�	 , in other words it uses LTSA to check31 � � 
 	 � �
� � � � . If this is false, then � is a behavior that occurs in

�
� that will result32

in a violation of
�

when
�

� interact with
�

� . Thus, � true � �
� �

�
� � � � is false33

and � is returned as a witness to this. If the triple �	� 
�	 � �
� � � � is true, then � is a34

behavior that occurs in
�

� that will not result in a violation of
�

when
�

� interact35

with
�

� , so the assumption
�

is restricting the behavior of
�

� unnecessarily. Thus,36 � 
 	 is returned to L* to answer its conjecture.37
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Table 1
Mapping � �

Table 2
Mapping � ����

��� �
� � �

true
output false
ack true
output false� ���
	
send true
output, ack false
output, output false
output, send false

���
�� �

ack�
true true� �

output false false
send true false
ack true true
output false false
send true false
output, ack false false� ���
	
output, output false false
output, send false false
send, ack false false
send, output true true
send, send true true

Remarks A characteristic of L* that makes it particularly attractive for our1

framework is its monotonicity. This means that the intermediate candidate assump-2

tions that are generated increase in size; each assumption is smaller than the next3

one. We should note, however, that there is no monotonicity at the semantic level.4

So while
� � � ��� � � ��� �

�
, it is not necessarily the case that

� . � � 6�� � . � ��� � 6 .5

3.2.2 Example6

Given components D%E1F3G3� and � G3� F3G3� as shown in Fig. 1 and the property ���������7

shown in Fig. 2 (see Section 2), we will check � true � Input � Output � Order �8

using rule ASYM. To do this, we set
�

�
+ D%E;F(G<� , �

�
+
� G3� F3G3� ,9

and
� + � ������� . The alphabet of the interface for this example is10

	
+ .).	�*D1E1F3G3� � � ���������56 � ��� G3� F3G3�)6 + � send 
 output 
 ack � .11

As described, at each iteration L* updates its observation table and produces a12

candidate assumption whenever the table becomes closed. The first closed ta-13

ble obtained is shown in Table 1 and its associated assumption,
� � , is shown in14

Fig. 5. The Teacher answers conjecture
� � by first invoking Oracle 1, which checks15 � � � �BD%E;F3G3� � ���������5� . Oracle 1 returns false, with counterexample � + � input, send,16

ack, input � , which describes a trace in
� � � Input � Order

���!�
that leads to state � .17

The Teacher therefore returns counterexample � 
�	 + � send, ack � to L*, which18

uses queries to again update its observation table until it is closed. From this ta-19

ble, shown in Table 2, the assumption
� � , shown in Fig. 6, is constructed and20

conjectured to the Teacher. This time, Oracle 1 reports that � � � �BD%E;F3G3� � ���������5�21

is true, meaning the assumption is not too weak. The Teacher then calls Oracle 2 to22

15
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Fig. 9. LTS for �����
	���� 4
determine if �0� �=G �9� � G3� F3G3� � � � � . This is also true, so the framework reports that1 � true � Input � Output � Order � is true.2

This example did not involve weakening of the assumptions produced by L*, since3

the assumption
� � was sufficient for the compositional proof. This will not always4

be the case. Consider � G3� F3G3� 4 , shown in Fig. 9, which allows multiple send actions5

to occur before producing output. If � G3� F3G3� were replaced by � G3� F3G3�)4 , then the6

verification process would be identical to the previous case, until Oracle 2 is in-7

voked by the Teacher for conjecture
� � . Oracle 2 returns that �0� � G �9� � G3� F3G3� 4 � � � �8

is false, with counterexample � send, send, output � . The Teacher analyzes this coun-9

terexample and determines that in the context of this trace, D1E1F3G3� does not violate10

� ������� . This trace (projected onto 	 ) is returned to L*, which will weaken the11

conjectured assumption. The process involves two more iterations, during which12

assumptions
�
� (Fig. 7) and

�
� (Fig. 8), are produced. Using

�
� , which is the13

weakest assumption
���

, both Oracles report true, so it can be concluded that14 � true � Input � Output’ � Order � also holds.15

3.2.3 Correctness and Termination16

Theorem 5 Given components
�

� and
�

� , and property
�

, the algorithm im-17

plemented by our framework for rule ASYM terminates and correctly reports on18

whether � true � �
� �

�
� � � � holds or not.19

PROOF. To prove the theorem we will first argue correctness of our approach, and20

then the fact that it terminates.21

Correctness: The Teacher in our framework uses the two premises of the assume-22

guarantee rule to answer conjectures. It only reports that � true � �
� �

�
� � � � is23

16



true when both premises are true, and therefore correctness is guaranteed by the1

compositional rule. Our framework reports an error when it detects a trace � of
�

�
2

which, when simulated on
�

� , violates the property, which implies that
�

� �
�

�
3

violates
�

.4

Termination: At any iteration [JMC: After an assumption is conjectured (?),5

our algorithm reports on whether � true � �
� �

�
� � � � is true] and terminates,6

or continues by providing a counterexample to L*. By correctness of L*, we are7

guaranteed that if it keeps receiving counterexamples, it will eventually, at some8

iteration � , produce
���

. During this iteration, Step 1 will return true by definition9

of
���

. The Teacher will therefore apply Step 2, which will return either true and10

terminate, or a counterexample. This counterexample represents a trace of
�

� that11

is not contained in
� . ��� 6 . Since, as discussed before,

���
is both necessary and12

sufficient, analysis of the counterexample will return false, and the algorithm will13

terminate.
�

14

It is interesting to note that the algorithm implemented by our framework may ter-15

minate before the weakest assumption is constructed via the iterative learning and16

refinement process. It terminates as soon as an assumption has been constructed17

that is strong enough to discharge the first premise but weak enough for the second18

premise to produce conclusive results, i.e., to prove the property or produce a real19

counterexample; this assumption may have fewer states than the weakest assump-20

tion.21

3.3 Generalization to E Components22

We presented our approach so far to the case of two components. Assume now that23

a system consists of E components. To check if system
�

� �
�

� �
� � �
�

�
� sat-24

isfies
�

, we decompose it into:
�

� and
� 4� + �

� �
�
� �

� � �
�

�
� and the learn-25

ing framework is applied recursively to check the second premise of the assume-26

guarantee rule.27

At each recursive invocation for
�

� and
� 4� + �

� � � �
�

� � � �
� � �
�

�
� , we solve28

the following problem: find assumption
� � such that the following are both true:29

� � � � � �
� � � ��� � � and30 � � true � �
� � � �

�
� � � �

� � �
�

�
� � � � � .31

Here
� ��� � is the assumption for

�
��� � and plays the role of the property for the32

current recursive call. Correctness and termination for this extension follows by33

induction on E from Theorem 5.34

17



3.4 Extension with a Circular Rule1

Our framework can accommodate a variety of assume-guarantee rules that are2

sound. Completeness of rules is required to guarantee termination. We investigate3

here another rule, that is similar to ASYM but it involves circular reasoning. This4

rule appeared originally in [18] (for reasoning about two components). The rule5

can be extended easily to reasoning about E�� �
components. [JMC: Should we6

reference Maier’s paper “Compositional Circular Assume-Guarantee Rules7

Cannot Be Sound and Complete” here? Corina: i think we should ref it in8

related work]9

Rule CIRC-N � � � � � � �
� � � �� � � � � � �

� � � � �
...E � � � � � �

� � � � � � �E � � �*� true � �
� � � � �� true � �
� �

�
� �

� � �
�

�
� � � �

Note that this rule is simlar to the rule ASYM applied recursively for E ��� com-10

ponents, where the first and the last component coincide. Therefore, learning based11

assume-guarantee reasoning proceeds as described in Section 3.3.12

4 Learning with Symmetric Rules13

Although sound and complete, the rules presented in the previous section are not14

always satisfactory since they are not symmetric in the use of the components.15

In [5] we proposed a set of symmetric rules that are sound and complete and we16

also described their automation using learning. They are symmetric in the sense that17

they are based on establishing and discharging assumptions for each component at18

the same time. Here we present one of the rules that we found particularly effective19

in practice and describe its integration in the learning framework.20

4.1 Symmetric Assume Guarantee Rules21

Here is an example of a symmetric rule that can be used for reasoning about a sys-22

tem composed of E�� �
components:

�
� �

�
� �

� � �
�

�
� . We require � � �

23 � �
�
� � �

�
� � � � � �

� and that for � ! � � 
 � 
 � � � E*� � � � � .	� �
� � � �

� �
� � � � �

� 6 � � �
.24

Informally, each assumption
� �

is a postulated environment assumptions for the25

18



component
� �

to achieve to satisfy property
�

. The co-assumption for
� �

is de-1

noted � � � �
and is the complement of

� �
.2

Rule SYM-N

� � � � � � �
� � � �� � � � � � �

� � � �
...E � � � � � �

� � � �E � ��� � .0� � � � � � � � � �
� � �
� � � � � 6 � � . � 6� true � �

� �
�

� �
� � �
�

�
� � � �

Theorem 6 Rule SYM-N is sound and complete.3

PROOF. To establish soundness, we show that the premises together with the4

negated conclusion lead to a contradiction. Consider a trace � for which the conclu-5

sion fails, i.e., � is a trace of
�

� �
�

� �
� � �
�

�
� that violates property

�
, in other6

words � is not accepted by
�

. By the definition of parallel composition, ��
&� �
� is7

accepted by
�

� . Hence, by premise 1, the trace ��
&� � � can not be accepted by
� � ,8

i.e., ��
&� � � is accepted by ��� � � . Similarly, by premise �
+ ������� E , the trace � 
)� � �

9

is accepted by � � � �
. By the definition of parallel composition and the fact that an10

FSM and its complement have the same alphabet, ��
�.	� � �
� � �

� � � �,� �
� 6 is ac-11

cepted by � � � � � ��� � � �
� � �
� � � � � and it violates

�
. But premise E � � states12

that the common traces in the co-sets belong to the language of
�

. Hence we have13

a contradiction.14

Our argument for the completeness of Rule SYM-N relies on weakest assumptions.15

To establish completeness, we assume the conclusion of the rule and show that we16

can construct assumptions that will satisfy the premises of the rule. We construct17

the weakest assumptions
��� � ,

��� � 
 ����� 
 ��� � for
�

� ,
�

� 
 ����� 
 �
� , respectively, to18

achieve
�

and substitute them for
� � ,

� � 
 ����� 
 � � . Premises � through E are sat-19

isfied. It remains to show that premise E � � holds. Again we proceed toward a20

contradiction. Suppose there is a trace � in
� .0� � ��� � � � � � � � �

� � �
� � � � � � 6 that21

violates
�

; more precisely � 
)� �
violates property

�
. By definition of parallel com-22

position, t is accepted by all ��� ��� � , ��� ��� � 
 ����� 
�� � � � � . Furthermore, there will23

exist � � ! � . �
� � � � � 6 such that � � 
)�*� + � , where � � is the alphabet of the as-24

sumptions. Similarly for �
+ ������� E , � � ! � . � � � ��� � 6 . � � , � � 
 ����� 
&� � can then be25

combined into a trace � 4 of
�

� �
�

� �
� � �
�

�
� such that � 4 
)�*� + � . But if that is26

so, this contradicts the assumed conclusion that
�

� �
�

� �
� � �
�

�
� satisfies

�
,27

since � violates
�

. Therefore, there can not be such a common trace � , and premise28 E � � holds.
�

29

19



�
true

� �� � ��� ��������� ��� � � � true

false

refine
L*

� �
� � � � ��� � � �false

refine
L*

� � � � ��� � � �
� �

false

refine
L*

���
� ��� � ��� � � �

	�
 ��� � � � ��� � � �������� ��� ������� 	�
 � �

Counterexample Analysis

true truetrue

false

true

�����

�
true

� � � � � � �������� � � � � � false

Fig. 10. Learning framework for rule SYM-Nto be fixed to have triples in conclusion

4.2 Learning Framework for Rule SYM-N1

Since rule SYM is just a special case of rule SYM-N, we present here directly2

the framework for rule SYM-N, as illustrated in Fig. 10. To obtain appropriate3

assumptions, the framework applies the compositional rule in an iterative fashion.4

L* is used to generate incrementally an assumption for each component, each of5

which being strong enough to establish the property
�

, i.e., to discharge premises6

� through E of Rule SYM-N. We use separate instances of the L* algorithm to7

iteratively learn the traces of
��� � ,

��� � 
 ����� 
 ��� � .8

4.2.1 The Teacher9

As before, we use model checking to implement the Teacher needed by L*. Ap-10

proximate assumptions are built by querying the system and using the results of the11

previous iteration.12

The conjectures returned by L* are intermediate assumptions
� � ,

� � , ...
�
� . The13

Teacher implements E � � oracles, one for each premise in the assume-guarantee14

rule:15

� Oracles � 
 � 
 ����� 
�E guide the corresponding L* instances towards conjectures16

that make the corresponding premise of rule SYM-N true. Once this is accom-17

plished,18 � Oracle E ��� is invoked to check the last premise of the rule, i.e.,� .:� � � � � ��� � � �
� � �
� � � � � 6 � � . � 6

If this is true, rule SYM-N guarantees that
�

� �
�

� �
� � �
�

�
� satisfies

�
.19

If the result of Oracle E���� is false (with counterexample trace � ), by counterex-20

ample analysis we identify whether
�

is indeed violated in
�

� �
�

� �
� � �
�

�
�21

or some of the candidate assumptions need to be modified. If an assumption needs22

20



to be refined then behaviors must be added, in the next iteration. The result will be1

that at least the behavior that the counterexample represents will be allowed by that2

assumption at the next iteration. The new assumption may of course be too abstract,3

and therefore the entire process must be repeated.4

Counterexample analysis Counterexample � is analyzed in a way similar to the5

analysis for rule ASYM, i.e., we analyze � to determine whether it indeed corre-6

sponds to a violation in
�

� �
�

� �
� � �
�

�
� . This is checked by simulating � on7 � � � � � �

, for all �
+
� ����� E . The following cases arise:8

� If � is a violating trace of all components
�

� 
 �
� ����� 
 �

� , then9 �
� �

�
� �

� � �
�

�
� indeed violates

�
, which is reported to the user.10 � If � is not a violating trace of at least one component

� �
, then we use � to weaken11

the corresponding assumption(s).12

4.2.2 Correctness and Termination13

Theorem 7 Given components
�

� 
 �
� 
 ����� 
 �

� and property
�

, the algorithm im-14

plemented by our framework for rule SYM-N terminates and correctly reports on15

whether
�

holds on
�

� �
�

� �
� � �
�

�
� .16

PROOF. Correctness: The Teacher returns true only if the premises of rule SYM-N17

hold, and therefore correctness is guaranteed by the soundness of the rule. The18

Teacher reports a counterexample only when it finds a trace that is violating in all19

components, which implies that
�

� �
�

� �
� � �
�

�
� also violates

�
.20

Termination: At any iteration, the teacher reports on whether or not
�

holds on21 �
� �

�
� �

� � �
�

�
� and terminates, or continues by providing a counterexam-22

ple to L*. By the correctness of L*, we are guaranteed that if it keeps receiving23

counterexamples, it will eventually, produce
��� � 
 � � � 
 ����� 
 ��� � respectively.24

During this last iteration, premises � through E will hold by definition of the weak-25

est assumptions. The Teacher will therefore check premise E � � , which will return26

either true and terminate, or a counterexample. Since the weakest assumptions are27

used, by the completeness of the rule, we know that the counterexample analysis28

will reveal a true error, and hence the process will terminate.
�

29

5 Learning with Alphabet Refinement30

In this section, we present a technique that extends the learning based assume-31

guarantee reasoning framework with alphabet refinement. We first illustrate the32

21
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Fig. 14. Complete interface for
the client-server example

Fig. 15. Assumption learned
with an alphabet smaller than
the complete interface alphabet

benefits of smaller interface alphabets for assume-guarantee reasoning through a1

simple client-server example from [24]. Then, we explain the effect of smaller in-2

terface alphabets on learning assumptions. We then describe the alphabet refine-3

ment algorithm, give its properties, and discuss how it extends to reasoning about4 E components as well as to circular and symmetric rules.5

5.1 Example6

Consider a system consisting of a server component and two identical client com-7

ponents that communicate through shared actions. Each client sends requests for8

reservations to use a common resource, waits for the server to grant the reserva-9

tion, uses the resource, and then cancels the reservation. For example, the LTS of a10

client is shown in Fig. 11, where �
+
�5
 � . The server, shown in Fig. 13 can grant or11

deny a request, ensuring that the resource is used only by one client at a time. We12

22
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Fig. 16. Client-Server Example: assumption obtained with the complete interface alphabet

are interested in checking the mutual exclusion property illustrated in Fig. 12, that1

captures the desired behavior of the client-server application.2

To check the property in a compositional way, assume that we break up the3

system into:
�

�
+
� � ���,E � � � � � ���,E � � and

�
�
+ �

�����#��� . The complete alpha-4

bet of the interface between
�

� � �
and

�
� (see Fig. 14) is:

�
client1.cancel,5

client1.grant, client1.deny, client1.request, client2.cancel, client2.grant, client2.deny,6

client2.request � .7

Using this alphabet and the learning method of [13], an assumption with eight8

states is learned, shown in Fig. 16. However, a (much) smaller assumption is suf-9

ficient for proving the mutual exclusion property. With an assumption alphabet10

of
�
client1.cancel, client1.grant, client2.cancel, client2.grant � , a strict subset of the11

complete interface alphabet (and, in fact, the alphabet of the property), a three state12

assumption, shown in Fig. 15, is learned. This smaller assumption enables more13

efficient verification than the eight state assumption obtained with the complete al-14

phabet. In the following section, we present an extension of the learning framework15

that is able to automatically infer smaller interface alphabets (and the correspond-16

ing assumptions).17

5.2 Learning Based Assume-guarantee Reasoning and Small Interface Alphabets18

Before describing the alphabet refinement algorithm, let us first consider the effect19

of smaller interface alphabets in the context of the learning framework. Let
�

� and20 �
� be components,

�
be a property, 		� be the interface alphabet, and 	 be an al-21

phabet such that 	 � 	 � . Assume that we use the learning framework of Section 322

23



but we now set this smaller 	 to be the alphabet of the assumption that the frame-1

work learns. From the correctness of the assume-guarantee rule, if the framework2

reports true, � true � �
� �

�
� � � � . When it reports false, it is because it finds a trace3 � in

�
� that falsifies �0��
�	 � �

� � � � . This, however, does not necessarily mean that4 �
� �

�
� violates

�
. Real violations are discovered by our original framework only5

when the alphabet is 	 � , and are traces � 4 of
�

� that falsify �0� 4 
�	
�8� �
� � � � . �

6

Consider again the client-server example. Assume 	 =
�
client1.cancel, client1.grant,7

client2.grant � , which is smaller than 		� =
�
client1.cancel, client1.grant, client1.deny,8

client1.request, client2.cancel, client2.grant, client2.deny, client2.request � . Learn-9

ing with 	 produces trace: � + � client2.request, client2.grant, client2.cancel,10

client1.request, client1.grant � . [JMC: How is this trace produced? Is it a trace11

that “Counterexample Analysis” believes is a real counterexample with the al-12

phabet 	 ? If so, please say this. If not, please say where this counterexample13

comes from.] Projected to 	 , this becomes ��
�	 + � client2.grant 
 client1.grant � . In14

the context of ��
 	 ,
�

� violates the property since � � �!�,E�� � � � � ���,E � � � �
err con-15

tains the following behavior (see Fig. 14): [JMC: Why does Figure 14 show this?]16

17

. C 
 C 
 C 6 client1.request��� . � 
 C 
 C 6 client2.request��� . � 
 � 
 C 6
client2.grant��� . � 
 � 
 � 6 client1.grant��� . � 
 � 
 error 618

Learning therefore reports false. This behavior is not feasible, however, in the19

context of ��
�	
� + � client2.request, client2.grant, client2.cancel, client1.request,20

client1.grant � . This trace requires a client2.cancel to occur before the client1.grant.21

Thus, in the context of 	 � the above violating behavior would be infeasible. We22

conclude that when applying the learning framework with alphabets smaller than23

	
� , if true is reported then the property holds in the system, but violations reported24

may be spurious.25

5.3 Algorithm for Alphabet Refinement26

Alphabet refinement extends the learning framework from [13] to deal with smaller27

alphabets than 	 � while avoiding spurious counterexamples. The steps of the algo-28

rithm are as follows (see Fig. 17 (a)):29

(1) Initialize 	 to a set
�

such that
� �

	 � .30

(2) Use the classic learning framework for 	 . If the framework returns true, then31

report true and go to step 4 (END). If the framework returns false with coun-32

terexamples � and � , go to the next step.33

�
In the assume-guarantee triples: ��� � and � 4 � � � are trace LTSs with alphabets � and � � ,

respectively.
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Fig. 17. Learning with alphabet refinement (a) and additional counterexample analysis (b)

[JMC: But Fig. 4 shows the learning algorithm only returning � . Should1

we modify Fig. 4 to show it returning � and � . Or, should we have it just2

have it return � and define � to be � 
 	 . Actually this whole next section3

is confusing because Fig. 4 shows � coming out of Oracle 2, which seems4

to be the opposite of how it is used in this section, i.e., in this section � is5

used as the output of Oracle 2. Can someone take a look at the � ’s and � ’s6

in this section and see if they are used consistently with Fig. 4?]7

(3) Perform extended counterexample analysis for � . If � is a real counterexam-8

ple, then report false and go to step 4 (END). If � is spurious, then refine 	 ,9

which consists of adding actions to 	 from 	 � . Go to step 2.10

(4) END of algorithm.11

When spurious counterexamples are detected, the refiner extends the alphabet with12

actions in the alphabet of the weakest assumption [JMC: maximal interface al-13

phabet (?)] and the learning of assumptions is restarted. In the worst case, 	 �14

is reached, and as proved in our previous work, learning would then only reports15

real counterexamples. In the above high-level algorithm, the highlighted steps are16

further specified in the following.17

Alphabet initialization The correctness of our algorithm is insensitive to the initial18

alphabet. We set the initial alphabet to those actions in the alphabet of the property19

that are also in 	 � , i.e., � � � 	 � . The intuition is that these interface actions are20

likely to be significant in proving the property, since they are involved in its defini-21

tion. A good initial guess of the alphabet may achieve big savings in terms of time22

since it results in fewer refinement iterations.23

Extended counterexample analysis An additional counterexample analysis is ap-24

pended to the original learning framework as illustrated in Fig. 17(a). The steps of25

this analysis are shown in Fig. 17(b). The extension takes as inputs both the coun-26

terexample � returned by Oracle 2, and the counterexample � that is returned by the27

original counterexample analysis. We modified the “classic” learning framework28

25



(Fig. 4) to return both � and � to be used in alphabet refinement (as explained be-1

low). As discussed, � is obtained because �:� 
 	 � �
� � � � does not hold. The next2

step is to check whether in fact � uncovers a real violation in the system. As illus-3

trated by the client-server example, the results of checking
�

� � �
err in the context4

of � projected to different alphabets may be different. The correct (non-spurious)5

results are obtained by projecting � on the alphabet 		� of the weakest assumption.6

Counterexample analysis therefore calls LTSA to check �0��
�	 �8� �
� � � � . If LTSA7

finds an error, the resulting counterexample � is real. If error is not reached, then8

the counterexample is spurious and the alphabet 	 needs to be refined. Refinement9

proceeds as described next.10

Alphabet refinement When spurious counterexamples are detected, we need to11

enrich the current alphabet 	 so that these counterexamples are eventually elim-12

inated. A counterexample � is spurious if in the context of ��
�	 � it would not be13

obtained. Our refinement heuristics are therefore based on comparing � and ��
�	 �14

to discover actions in 	 � to be added to the learning alphabet (for this reason � is15

also projected on 	 � in the refinement process). We have currently implemented16

the following heuristics:17

AllDiff: adds all the actions in the symmetric difference of ��
�	 � and � 
�	
� . A18

potential problem of this heuristic is that it may add too many actions too soon. If19

it happens to add useful actions, however, it may terminate after a small number20

of iterations.21

Forward: scans the traces [JMC: ��
�	
� and � 
�	
� (?)] in parallel from beginning22

to end looking for the first index � where they disagree; if such an � is found,23

both actions � 
 	 �=. � 68
�� 
�	
�=.
� 6 are added to the alphabet. By adding fewer actions24

during each iteration, the algorithm may end up with a smaller alphabet. But, it25

may take more iterations before it does not produce a spurious result.26

Backward: as similar to Forward, but scans from the end of the traces to the be-27

ginning.28

5.3.1 Correctness and Termination29

For correctness and termination of learning with alphabet refinement, we first show30

progress of refinement, meaning that at each refinement stage, new actions are dis-31

covered to be added to 	 .32

Proposition 8 (Progress of alphabet refinement) Let 	 �
+ .	� �

�
� � � 6�� � �

�
33

and 	 � 	
� be the alphabet of the weakest assumption and that of the assumption34

at the current alphabet refinement stage, respectively. Let � be a trace of
�

� � � �����35

such that ��
�	 leads to error on
�

� � �������
by an error trace � , but ��
�	 � does not36

lead to error on
�

� � �������
. Then � 
 	 ��A+ � 
 	
� and there exists an action in their37

symmetric difference that is not in 	 .38

26



PROOF. We prove by contradiction that ��
�		� A+ � 
�	
� . Suppose ��
�	
� + � 
�	
� .1

We know that � is an error trace on
�

� � �������
. Since actions of � that are not in 		�2

are internal to
�

� � �
, then � 
 	 � also leads to error on

�
� � �������

. But then ��
�	 �3

leads to error on
�

� � �������
, which is a contradiction.4

We now show that there exists an action in the symmetric difference between ��
 	��5

and � 
�	
� that is not in 	 (this action will be added to 	 by alphabet refinement).6

Trace � 
 	
� is � 
 	 , with some interleaved actions from 		��� 	 . Similarly, � 
 	 �7

is ��
�	 with some interleaved actions from 		��� 	 , since � is obtained by com-8

posing the trace LTS � 
 	 with
�

� � �������
. Thus ��
�	 + � 
 	 . We again proceed9

by contradiction. If all the actions in the symmetric difference between ��
�	 � and10 � 
 	
� were in 	 , we would have ��
�	 � + ��
�	 + � 
�	 + � 
 	
� , which contradicts11 ��
�	
��A+ � 
�	
� . �
12

We also use the following lemma.13

Lemma 9 For any component
�

� , property
�

, and interface alphabet 	 ,14 � ��� � � � �
� � � � holds.15

PROOF.
���
� � 
�	

+ ���
� � . If in Definition 2 we substitute

� �
� � for

�
� , we obtain16

that:
�

� � � � � � �
� + �

if and only if
���
� � �
� + � �

� � . But the latter holds trivially, so17

we conclude that
�

� � � � � � �
� + �

, which is equivalent to � ��� � � � �
� � � � , always18

holds.
�

19

Correctness follows from the assume guarantee rule and the extended counterex-20

ample analysis. Termination follows from termination of the original framework,21

from the progress property and also from the finiteness of 	� . Moreover, from the22

progress property it follows that the refinement algorithm for two components has23

at most
�
	
�
�
iterations.24

Theorem 10 Given components
�

� and
�

� , and property
�

, L* with alphabet25

refinement terminates and returns true if
�

� �
�

� satisfies
�

and false otherwise.26

PROOF. Correctness: When the teacher returns true, then correctness is guaran-27

teed by the assume-guarantee compositional rule. If the teacher returns false, the28

extended counterexample analysis reports an error for a trace � of
�

� , such that29 ��
�	
� in the context of
�

� violates the property (the same test is used in the algo-30

rithm from [13]) hence
�

� �
�

� violates the property.31

Termination: From the correctness of L*, we know that at each refinement stage32

(with alphabet 	 ), if L* keeps receiving counterexamples, it is guaranteed to gen-33

erate
���
� � . At that point, Oracle 1 will return true (from Lemma 9). Therefore,34

27



Oracle 2 will be applied, which will return either true, and terminate, or a coun-1

terexample � . This counterexample is a trace that is not in
� . ��� � � 6 . It is either a2

real counter example (in which case the algorithm terminates) or it is a trace � such3

that ��
�	 leads to error on
�

� � �������
by an error trace � , but ��
 		� does not lead4

to error on
�

� � �������
. Then from Theorem 8, we know that ��
�		� A+ � 
 	
� and5

there exists an action in their symmetric difference that is not in 	 . The refiner will6

add this action (or more actions depending on the refinement strategy) to 	 and7

the learning algorithm is repeated for this new alphabet. Since 	 � is finite, in the8

worst case, 	 grows into 	 � , for which termination and correctness follow from9

Theorem ??.
�

10

We also note a property of weakest assumptions, which states that by adding ac-11

tions to an alphabet 	 , the corresponding weakest assumption becomes weaker12

(i.e., contains more behaviors) than the previous one.13

Proposition 11 Assume components
�

� and
�

� , property
�

and the correspond-14

ing interface alphabet 		� . Let 	 
 	 4 be sets of actions such that: 	 � 	 4 � 	
� .15

Then:
� . ��� � � 6 � � . ��� � ��� 6 � � . � � � �� 6 .16

PROOF. Since 	
�
	 4 , we know that

���
� � 
�	 4 + ���

� � . By substituting, in17

Definition 2,
� �
� � for

�
� , we obtain that: � true � �

� � . � � � � 6 � � � if and only if18 � true � � � � � � � � � � � � . From Proposition 9 [JMC: Should this be Lemma 9?] we19

know that � true � �
� � . ��� � � 6 � � � . Therefore, � true � ��� � � � ��� � � � � holds, which20

implies that
� . ��� � � 6 � � . ��� � ��� 6 . Similarly,

� . ��� � ��� 6 � � . ��� � � � 6 . �
21

With alphabet refinement, our framework adds actions to the alphabet, which trans-22

lates into adding more behaviors to the weakest assumption that L* tries to prove.23

This means that at each refinement stage � , when the learner is started with a new24

alphabet 	 �
such that 	 � � � � 	 �

, it will try to learn a weaker assumption
���
� ���25

than
���
� ����� � , which was its goal in the previous stage. Moreover, all these assump-26

tions are under-approximations of the weakest assumption
���
� �� that is necessary27

and sufficient to prove the desired property. Note that at each refinement stage the28

learner might stop earlier, i.e., before computing the corresponding weakest as-29

sumption. The above property allows re-use of learning results across refinement30

stages (see Section 8).31

5.4 Generalization to E Components32

Alphabet refinement can also be used when reasoning about more than33

two components using rule ASYM. Recall from Section 3 that to check34

if system
�

� �
�

� �
� � �
�

�
� satisfies

�
, we decompose it into:

�
� and35

28



� 4� + �
� �

�
� �

� � �
�

�
� and the learning algorithm (without refinement) is in-1

voked recursively for checking the second premise of the assume-guarantee rule.2

Learning with alphabet refinement follows this recursion. At each recursive invo-3

cation for
�

� and
� 4� + �

� � � �
�

� � �
� � �
�

�
� , we solve the following problem:4

find assumption
� � and alphabet 	 ��� such that the rule premises hold, i.e.5

Oracle 1: � true � �
� � � � � � ��� � � and6

Oracle 2: � true � �
� � � �

�
� � � �

� � �
�

�
� � � � � .7

Here
� ��� � is the assumption for

�
��� � and plays the role of the property for the8

current recursive call. Thus, the alphabet of the weakest assumption for this re-9

cursive invocation is 	 � �
+ .0� �

�
� � � ��� � 6��?.	� �

� � �
� � �

� � �
� � � ��� � �

� 6 . If10

Oracle 2 returns a counterexample, then the counterexample analysis and alphabet11

refinement proceed exactly as in the 2-component case. Note that at a new recursive12

call for
�

� with a new
� ��� � , the alphabet of the weakest assumption is recomputed.13

Correctness and termination of this extension follow from Theorem 10 (and from14

finiteness of E ). The proof proceeds by induction on E .15

5.5 Extension with Circular and Symmetric Rules16

Alphabet refinement also applies to the rules CIRC-N and SYM-N. As mentioned,17

CIRC-N is a special case of the recursive application of rule ASYM for E � � compo-18

nents, where the first and last component coincide. Therefore alphabet refinement19

applies to CIRC-N as we described here.20

For rule SYM-N, the counterexample analysis for the error trace � obtained from21

checking premise E ��� is extended for each component
� �

, for �
+
� ����� E . The22

extension works similarly to that for ASYM discussed earlier in this section. The23

error trace � is simulated on each
� � � ��� �

with the current assumption alphabet.24

� If � is violating for some � , then we check whether � , with the entire alphabet of25

the weakest assumption for � is still violating. If it is, then � is a real error trace26

for
� �

. If it is not, the alphabet of the current assumption for � is refined with27

actions from the alphabet of the corresponding weakest assumption.28 � If � is a real error trace for all � , then it is reported as a real violation of the29

property on the entire system.30

If alphabet refinement takes place for some � , the learning of the assumption for31

this � is restarted with the refined alphabet, and premise E ��� is re-checked with32

the new learned assumption for � .33
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needs to be fixed; it is unclear what c is here; see Fig 171

6 Experiments2

this is biased somewhat towards alpha refinement: maybe we should change3

that tables should be made smaller4

We implemented learning with rules ASYM, SYM-N, CIRC-N, with and without al-5

phabet refinement in LTSA and evaluated the implementations for checking safety6

properties of various concurrent systems that we briefly describe below. The goal7

of the evaluation was to assess the performance of learning, the effect of alpha-8

bet refinement on learning, to compare the effect of the different rules, and to also9

compare the scalability of compositional verification by learning to that of non-10

compositional verification.11

Models and properties We used the following case studies. Gas Station [12] de-12

scribes a self-serve gas station consisting of � customers, two pumps, and an op-13

erator. For �
+�� 
�� 
�� , we checked that the operator correctly gives change to a14

customer for the pump that he/she used. Chiron [12] models a graphical user inter-15

face consisting of � artists, a wrapper, a manager, a client initialization module, a16

dispatcher, and two event dispatchers. For �
+ ������� � , we checked two properties:17

“the dispatcher notifies artists of an event before receiving a next event”, and “the18

dispatcher only notifies artists of an event after it receives that event”. MER [24]19

models the flight software component for JPL’s Mars Exploration Rovers. It con-20

tains � users competing for resources managed by an arbiter. For �
+ ���������

, we21

checked that communication and driving cannot happen at the same time as they22

share common resources. Rover Executive [13] models a subsystem of the Ames23

K9 Rover. The models consists of a main ‘Executive’ and an ‘ExecCondChecker’24

component responsible for monitoring state conditions. We checked that for a spe-25

cific shared variable, if the Executive reads its value, then the ExecCondChecker26

should not read it before the Executive clears it.27

Note that the Gas Station and Chiron were analyzed before, in [12], using learning28

based assume guarantee reasoning (with ASYM and no alphabet refinement). Four29

properties of Gas Station and nine properties of Chiron were checked to study how30

various 2-way model decompositions (i.e. grouping the modules of each analyzed31

system into two “super-components”) affect the performance of learning. For most32

of these properties, learning performs better than non-compositional verification33

and produces small (one-state) assumptions. For some other properties, learning34

does not perform that well, and produces much larger assumptions. To stress-test35

our approach, we selected the latter, more challenging properties for our study here.36
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Table 3
Comparison of learning for 2-way decompositions with ASYM, with and without alphabet
refinement.

Case � No refinement Refinement + bwd Refinement + fwd Refinement + allDiff� ���
Mem. Time

� ���
Mem. Time

� ���
Mem. Time

� ���
Mem. Time

Gas Station 3 177 4.34 – 8 3.29 2.70 37 6.47 36.52 18 4.58 7.76
4 195 100.21 – 8 24.06 19.58 37 46.95 256.82 18 36.06 52.72
5 53 263.38 – 8 248.17 183.70 20 414.19 – 18 360.04 530.71

Chiron, 2 9 1.30 1.23 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90
Property 1 3 21 5.70 5.71 20 6.10 23.82 20 6.06 7.40 20 6.06 7.77

4 39 27.10 28.00 38 44.20 154.00 38 44.20 33.13 38 44.20 35.32
5 111 569.24 607.72 110 – 300 110 – 300 110 – 300

Chiron, 2 9 116 110 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74
Property 2 3 25 4.45 6.39 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92

4 45 25.49 32.18 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67
5 122 131.49 246.84 3 163.85 18.08 3 163.85 18.05 3 163.85 17.99

MER 2 40 6.57 7.84 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01
3 377 158.97 – 8 10.56 11.86 8 10.56 11.86 8 10.56 11.85
4 38 391.24 – 10 514.41 1193.53 10 514.41 1225.95 10 514.41 1226.80

Rover Exec. 2 11 2.65 1.82 4 2.37 2.53 11 2.67 4.17 11 2.54 2.88

Experimental set-up and results We performed several sets of experiments. First,1

we compared learning with different alphabet refinement heuristics to learning2

without alphabet refinement for 2-way decompositions with rule ASYM. Then, we3

compared the recursive implementation of the refinement algorithm with ASYM to4

monolithic (non-compositional) verification, for increasing number of components.5

All the experiments were performed on a Dell PC with a 2.8 GHz Intel Pentium 46

CPU and a 1.0 GB RAM, running Linux Fedora Core 4 and using Sun’s Java SDK7

version 1.5. For the first set of experiments, for Gas Station and Chiron we used the8

best 2-way decompositions described in [12]. For Gas Station, the operator and the9

first pump are one component, and the rest of the modules are the other. For Chiron,10

the event dispatchers are one component, and the rest of the modules are the other.11

For MER, half of the users are in one component, and the other half with the ar-12

biter in the other. For the Rover we used the two components described in [13]. For13

the second set of experiments, we used an additional heuristic to compute the or-14

dering of the modules in the sequence
�

� 
 ����� 
 �
� for the recursive learning with15

refinement so as to minimize the sizes of the interface alphabets 	 � � 
 ����� 	 � � . We16

generated offline all possible orders with their associated interface alphabets and17

then chose the order that minimizes the sum
� ��� ���	� �

�
	 � �
�
.18

The experimental results shown in Tables 3 and 4 are for running the learning19

framework with ‘No refinement’, and for refinement with backward (‘+bwd’), for-20

ward (‘+fwd’) and ‘+allDiff’ heuristics. For each run, we report
� � �

(the maximum21

assumption size reached during learning), ‘Mem.’ (the maximum memory used by22

LTSA to check assume-guarantee triples, measured in MB) and ‘Time’ (total CPU23

running time, measured in seconds). Column ‘Monolithic’ reports the memory and24

run-time of non-compositional model checking. We set a limit of 30 minutes for25

each run. The sign ‘–’ indicates that the limit of 1GB of memory or the time limit26

has been exceeded. For these cases, the data is reported as it was when the limit27

was reached.28
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Table 4
Comparison of learning for ASYM rule with and without alphabet refinement, and mono-
lithic verification.

Case � ASYM ASYM+ref Monolithic�
�

�
Mem. Time

�
�

�
Mem. Time Mem. Time

Gas Station 3 473 109.97 – 25 2.41 13.29 1.41 0.034
4 287 203.05 – 25 3.42 22.50 2.29 0.13
5 268 283.18 – 25 5.34 46.90 6.33 0.78

Chiron, 2 352 343.62 – 4 0.93 2.38 0.88 0.041
Property 1 3 182 114.57 – 4 1.18 2.77 1.53 0.062

4 182 116.66 – 4 2.13 3.53 2.75 0.147
5 182 115.07 – 4 7.82 6.56 13.39 1.202

Chiron, 2 190 107.45 – 11 1.68 40.11 1.21 0.035
Property 2 3 245 68.15 – 114 28 – 1.63 0.072

4 245 70.26 – 103 23.81 – 2.89 0.173
5 245 76.10 – 76 32.03 – 15.70 1.53

MER 2 40 8.65 21.90 6 1.23 1.60 1.04 0.024
3 501 240.06 – 8 3.54 4.76 4.05 0.111
4 273 101.59 – 10 9.61 13.68 14.29 1.46
5 200 78.10 – 12 19.03 35.23 14.24 27.73
6 162 84.95 – 14 47.09 91.82 – 600

Finally, we compared learning with and without alphabet refinement for rules SYM-1

N and CIRC-N under the same conditions as in the previous experiments. The re-2

sults are in Tables 5 and 6.3

Discussion The results overall show that without alphabte refinement learning has4

limited performance, but alphabet refinement improves it significantly. Table 35

shows that alphabet refinement improved the assumption size in all cases, and in a6

few, up to two orders of magnitude (see Gas Station with �
+ � 
 � , Chiron, Property7

3, with �
+
� , MER with �

+ �
). It improved memory consumption in 10 out of8

15 cases, and also improved running time, as for Gas Station and for MER with9

�
+ � 
�� learning without refinement did not finish within the time limit, whereas10

with refinement it did. The benefit of alphabet refinement is even more obvious11

in Table 4: ‘No refinement’ exceeded the time limit in all but one case, whereas12

refinement completed in 14 of 16 cases, producing smaller assumptions and using13

less memory in all the cases, and up to two orders of magnitude in a few. Table 314

also indicates that the performance of the ‘bwd’ strategy is (slightly) better than15

the other refinement strategies. Therefore we used this strategy for the experiments16

reported in Table 4.17

Table 4 indicates that learning with refinement scales better than without refine-18

ment for increasing number of components. As � increases, the memory and time19

consumption for ‘Refinement’ grows slower than that of ‘Monolithic’. For Gas Sta-20

tion, Chiron (Property 1), and MER, for small values of � , ‘Refinement’ consumes21
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Table 5
Comparison of learning for SYM rule with and without alphabet refinement.

Case � SYM SYM+ref
�
�

�
Mem. Time

�
�

�
Mem. Time

Gas Station 3 7 1.34 – 83 31.94 874.39
4 7 2.05 – 139 38.98 –
5 7 2.77 – 157 52.10 –

Chiron, 2 19 2.21 – 21 4.56 52.14
Property 1 3 19 2.65 – 21 4.99 65.50

4 19 4.70 – 21 6.74 70.40
5 19 17.65 – 21 28.38 249.3

Chiron, 2 7 1.16 – 8 0.93 6.35
Property 2 3 7 1.36 – 16 1.43 9.40

4 7 2.29 – 32 3.51 16.00
5 7 8.20 – 64 20.90 57.94

MER 2 40 6.56 9.00 6 1.69 1.64
3 64 11.90 25.95 8 3.12 4.03
4 88 1.82 83.18 10 9.61 9.72
5 112 27.87 239.05 12 19.03 22.74
6 136 47.01 608.44 14 47.01 47.90

more memory than ‘Monolithic’, but as � increases the gap is narrowing, and for1

the largest � ‘Refinement’ becomes better than ‘Monolithic’. This leads to cases2

such as MER with �
+ �

where, for a large enough parameter value, ‘Monolithic’3

runs out of memory, whereas ‘Refinement’ succeeds.4

Tables 5 and 6 indicate that generally rules SYM-N and CIRC-N do not improve the5

performance of learning or the effect of alphabet refinement, but they can some-6

times handle cases which were challenging for ASYM, as is the case of SYM-N for7

Chiron, property 2. Thus there is some benefit in using these rules complementary8

to each other.9

7 Related work10

Several frameworks have been proposed to support assume guarantee reason-11

ing [20,25,11,18]. For example, the Calvin tool [15] uses assume-guarantee rea-12

soning for the analysis of Java programs, while Mocha [2] supports modular ver-13

ification of components with requirements specified based in the Alternating-time14

Temporal logic. The practical impact of these previous approaches has been limited15

because they require non-trivial human input in defining appropriate assumptions.16

Previous work [17,13] proposed to use L* to automate assume-guarantee reason-17

ing. Since then, several other frameworks that use L* for learning assumptions have18
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Table 6
Comparison of learning for CIRC rule with and without alphabet refinement.

Case � CIRC CIRC+ref
�
�

�
Mem. Time

�
�

�
Mem. Time

Gas Station 3 205 108.96 – 25 2.43 15.10
4 205 107.00 – 25 3.66 25.90
5 199 105.89 – 25 5.77 58.74

Chiron, 2 259 78.03 – 4 0.96 2.71
Property 1 3 253 77.26 – 4 1.20 3.11

4 253 77.90 – 4 2.21 3.88
5 253 81.43 – 4 7.77 7.14

Chiron, 2 67 100.91 – 327 44.17 –
Property 2 3 245 75.76 – 114 26.61 –

4 245 77.93 – 103 23.93 –
5 245 81.33 – 76 32.07 –

MER 2 148 597.30 – 6 1.89 1.51
3 281 292.01 – 8 3.53 4.00
4 239 237.22 – 10 9.60 10.64
5 221 115.37 – 12 19.03 27.56
6 200 88.00 – 14 47.09 79.17

been developed – [3] presents a symbolic BDD implementation using NuSMV. This1

symbolic version was extended in [23] with algorithms that decompose models2

using hypergraph partitioning, to optimize the performance of learning on result-3

ing decompositions. Different decompositions are also studied in [12] where the4

best two-way decompositions are computed for model-checking with the LTSA5

and FLAVERS tools. L* has also been used in [1] to synthesize interfaces for Java6

classes, and in [27] to check component compatibility after component updates.7

Our approach for alphabet refinement is similar in spirit to counterexample-guided8

abstraction refinement (CEGAR) [9]. CEGAR computes and analyzes abstractions9

of programs (usually using a set of abstraction predicates) and refines them based10

on spurious counter-examples. However, there are some important differences be-11

tween CEGAR and our algorithm. Alphabet refinement works on actions rather12

than predicates, it is applied compositionally in an assume-guarantee style and13

it computes under-approximations (of assumptions) rather than behavioral over-14

approximations (as it happens in CEGAR). In the future, we plan to investigate15

more the relationship between CEGAR and our algorithm. The work of [19] pro-16

poses a CEGAR approach to interface synthesis for C libraries. This work does17

not use learning, nor does it address the use of the resulting interfaces in assume-18

guarantee verification.19

A similar idea to our alphabet refinement for L* in the context of assume guarantee20

verification has been developed independently in [6]. In that work, L* is started21

with an empty alphabet, and, similarly to ours, the assumption alphabet is refined22
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when a spurious counterexample is obtained. At each refinement stage, a new min-1

imal alphabet is computed that eliminates all spurious counterexamples seen so far.2

The computation of such a minimal alphabet is shown to be NP-hard. In contrast,3

we use much cheaper heuristics, but do not guarantee that the computed alphabet is4

minimal. The approach presented in [28] improves upon assume guarantee learning5

for systems that communicate based on shared memory, by using SAT based model6

checking and alphabet clustering.7

Corina: add Maier’s circular paper??? i am not sure about it since we actually8

that circular rules can be sound and complete???9

8 Conclusions and Future Work10

We have introduced a framework that uses a learning algorithm to synthesize as-11

sumptions that automate assume guarantee reasoning for finite state machines and12

safety safety. The framework incorporates symmetric, asymmetric and circular as-13

sume guarantee rules and also uses alphabet refinement to compute small assump-14

tions alphabet that are sufficient for verification. The framework has been applied15

to a variety of systems where it showed its effectiveness.16

In future work we plan to look beyond checking safety properties and to address fur-17

ther algorithmic optimizations, e.g. reuse of query results and learning tables across18

alphabet refinement stages. Moreover, we plan to explore techniques alternative to19

learning for computing assumption, e.g. we are investigating CEGAR-like tech-20

niques for computing assumptions incrementally as abstractions of environments.21

Finally we plan to perform more experiments to fully evaluate our technique.22

References23

[1] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. “Synthesis of interface specifications24

for Java classes”. In Proceedings of POPL’05, pages 98–109, 2005.25

[2] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. “MOCHA:26

Modularity in Model Checking”. In Proceedings of CAV’98, volume 1427 of LNCS,27

pages 521–525, 1998.28

[3] R. Alur, P. Madhusudan, and Wonhong Nam. “Symbolic Compositional Verification29

by Learning Assumptions”. In Proceedings of CAV05, pages 548–562, 2005.30

[4] D. Angluin. “Learning regular sets from queries and counterexamples”. Information31

and Computation, 75(2):87–106, November 1987.32

35



[5] H. Barringer, D. Giannakopoulou, and C. S. P ăs ăreanu. “Proof Rules for Automated1

Compositional Verification through Learning”. In Proceedings of SAVCBS’03, pages2

14–21, 2003.3

[6] S. Chaki and O. Strichman. “Optimized L*-based Assume-guarantee Reasoning”. In4

Proceedings of TACAS’07 (to appear), 2007.5

[7] S.C. Cheung and J. Kramer. Checking safety properties using compositional6

reachability analysis. ACM Transactions on Software Engineering and Methodology,7

8(1):49–78, 1999.8

[8] T. S. Chow. Testing software design modeled by finite-state machines. IEEE9

Transactions on Software Engineering, SE-4(3):178–187, May 1978.10

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-Guided11

Abstraction Refinement”. In Proceedings of CAV’00, volume 1855 of LNCS, pages12

154–169, 2000.13

[10] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.14

[11] E. M. Clarke, D. E. Long, and K. L. McMillan. “Compositional Model Checking”. In15

Proceedings of LICS’89, pages 353–362, 1989.16

[12] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. “Breaking Up is Hard to Do: An17

Investigation of Decomposition for Assume-Guarantee Reasoning”. In Proceedings18

of ISSTA’06, pages 97–108. ACM Press, 2006.19

[13] J. M. Cobleigh, D. Giannakopoulou, and C. S. P ăs ăreanu. “Learning Assumptions for20
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